Enhancing Power Harvesting Using a Tuned Auxiliary Structure

Michael Damianakis¹
Jan Goethals²
Jeffrey Kowtko³
Mentor: Phillip Cornwell⁴

¹Dept. of Mechanical Engineering, Georgia Institute of Technology

²Dept. of Civil Engineering, University of California-Berkeley

³Dept. of Aerospace Engineering, University of Illinois at Urbana-Champaign

⁴Professor of Mechanical Engineering, Rose-Hulman Institute of Technology

Overview

- Motivation
- Theory
- Approach/Experimental Setup
- Tuning Procedure
- Experimental Results
- Conclusions and Recommendations

Energy harvesting is the key to self-sufficient microelectronic devices

- Wireless communications devices
- Digital signal processes
- Wireless sensors
 - Structural health monitoring
 - Damage prognosis

The Theory because knowing is half the battle

Voltage applied to PZT element:

Its dimension will change

A PZT element is mechanically stressed:

It generates electrical charge

Voltage is related to the physical properties of the PZT

$$V_{out}(t) = \frac{q}{C_p} = K_s y'(L_p)$$

$$y'(L_p) =$$
 slope of the auxiliary structure at the end of the PZT patch.

The auxiliary structure is tuned to its first bending mode

Let's write the slope in terms of tip displacement,

$$y'(x) = \frac{3y_a}{2L^3} \left(2Lx - x^2\right)$$

The motion of the coupled host structure and PZT can be expressed as a 2-DOF linear system

$$M_a\ddot{y}_a + K_ay_a - K_ay_m = 0$$

$$M_n\ddot{y}_m + C_n\dot{y}_m + K_ny_m - K_ay_a = \phi_{na}\phi_{nk}F$$

Note: we assume negligible damping in the auxiliary structure

$$\begin{bmatrix} Y_{m} \\ Y_{a} \end{bmatrix} = \frac{\begin{bmatrix} K_{a} - M_{a}\omega^{2} & K_{a} \\ K_{a} & K_{n} + K_{a} - M_{n}\omega^{2} + j\omega C_{n} \end{bmatrix}}{\Delta(\omega)} \begin{bmatrix} \phi_{na}\phi_{nk}F(\omega) \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{K_{a} - M_{a}\omega^{2}}{\Delta(\omega)}\phi_{na}\phi_{nk}F(\omega) \\ \frac{K_{a}}{\Delta(\omega)}\phi_{na}\phi_{nk}F(\omega) \end{bmatrix}$$

Assume the auxiliary structure is perfectly tuned to its host structure:

$$V_{a} = \frac{-\phi_{na}\phi_{nk}F}{K_{a}} = \frac{-\phi_{na}\phi_{nk}FL^{3}}{3EI}$$

$$V'(x) = \frac{3y_{a}}{2L^{3}}(2Lx - x^{2})$$

$$V_{out}(t) = \frac{q}{C_{p}} = K_{s}y'(L_{p})$$

$$V_{out}(t) = \frac{K_s \phi_{na} \phi_{nk} F}{2EI} \left(2LL_p - L_p^2 \right)$$

Approach/Experimental Setup What are we harvesting energy from??

Experimental Setup

Learning the dynamic characteristics of our host structure

The Tuning Procedure What Location? What Frequency?

NATIONAL LABORATORY

Sample auxiliary structures

$$f_1 = \frac{1}{2\pi} \sqrt{\frac{3EI}{L^3 (M + 0.24M_b)}}$$

Mounting the Auxiliary Structure...

Iteration #1

В

Iteration #3

Iteration #5

Tuned and Mistuned PZT FRFs

FRF peaks do NOT merge

A tuned auxiliary structure demonstrates increased open-loop voltage output

Impedance-matching shows optimal PZT loading

FRFs of large magnitudes increase auxiliary structure efficiency

FRFs of large magnitudes increase auxiliary structure efficiency

NATIONAL LABORATORY

Enhanced power harvesting can be achieved using a tuned auxiliary structure

- Even mistuned auxiliary structures are beneficial
- Important parameters
 - Magnitude of mode shape at auxiliary structure's location
- Considerations for other applications
 - Time invariance
 - Input force characteristics
 - Auxiliary structure geometric constraints

Recommendations

- Single variable analysis of auxiliary structures
 - Length
 - Thickness
- PZT patch size
- Multiple PZT patches
 - In parallel (increase current)
 - In series (increase voltage output)
- Circuit optimization

Acknowledgements

- Vibrant Technologies
 - MEScopeVES experimental modal analysis software
- The Mathworks, Inc.
 - MATLAB numerical analysis software
- Hibbitt, Karlsson and Sorensen, Inc.
 - ABAQUS finite element software

9-11

Questions?

12-18

